Visualization of quantized vortex reconnection enabled by laser ablation

Author:

Minowa Yosuke12ORCID,Aoyagi Shota1ORCID,Inui Sosuke3ORCID,Nakagawa Tomo3ORCID,Asaka Gamu3,Tsubota Makoto3456ORCID,Ashida Masaaki1ORCID

Affiliation:

1. Graduate School of Engineering Science, Osaka University, 1-3, Machikane-yama, Toyonaka, Osaka, Japan.

2. JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan.

3. Department of Physics, Osaka City University, 3-3-138 Sugimoto, Osaka, Japan.

4. Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, 3-3-138 Sugimoto, Osaka, Japan.

5. The Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Osaka, Japan.

6. Department of Physics, Osaka Metropolitan University, 3-3-138 Sugimoto, Osaka, Japan.

Abstract

Impurity injection into superfluid helium is a simple and appealing method with diverse applications, including high-precision spectroscopy, quantum computing with surface electrons, nano/micromaterial synthesis, and flow visualization. Quantized vortices play a major role in the interaction between superfluid helium and light impurities. However, the basic principle governing this interaction is still unclear for dense (high mass density and refractive index) materials, such as semiconductor and metal impurities. Here, we provide experimental evidence of the dense silicon nanoparticle attraction to the quantized vortex cores. We prepared the silicon nanoparticles via in situ laser ablation. Following laser ablation, we observed that the silicon nanoparticles formed curved filament–like structures, indicative of quantized vortex cores. We also observed that two accidentally intersecting quantized vortices exchanged their parts, a phenomenon called quantized vortex reconnection. This behavior closely matches the dynamical scaling of reconnections. Our results provide a previously unexplored method for visualizing and studying impurity-quantized vortex interactions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3