Evaluating bias and noise induced by the U.S. Census Bureau’s privacy protection methods

Author:

Kenny Christopher T.1ORCID,McCartan Cory2ORCID,Kuriwaki Shiro3ORCID,Simko Tyler1ORCID,Imai Kosuke14ORCID

Affiliation:

1. Department of Government, Harvard University, 1737 Cambridge Street, Cambridge, MA 02138, USA.

2. Center for Data Science, New York University, New York, NY 10011, USA.

3. Department of Political Science and Institution for Social and Policy Studies, Yale University, New Haven, CT 06511, USA.

4. Department of Statistics, Harvard University, Cambridge, MA 02138, USA.

Abstract

The U.S. Census Bureau faces a difficult trade-off between the accuracy of Census statistics and the protection of individual information. We conduct an independent evaluation of bias and noise induced by the Bureau’s two main disclosure avoidance systems: the TopDown algorithm used for the 2020 Census and the swapping algorithm implemented for the three previous Censuses. Our evaluation leverages the Noisy Measurement File (NMF) as well as two independent runs of the TopDown algorithm applied to the 2010 decennial Census. We find that the NMF contains too much noise to be directly useful without measurement error modeling, especially for Hispanic and multiracial populations. TopDown’s postprocessing reduces the NMF noise and produces data whose accuracy is similar to that of swapping. While the estimated errors for both TopDown and swapping algorithms are generally no greater than other sources of Census error, they can be relatively substantial for geographies with small total populations.

Publisher

American Association for the Advancement of Science (AAAS)

Reference30 articles.

1. M. Hotchkiss J. Phelan Uses of census bureau data in federal funds distribution: A new design for the 21st century (U.S. Census Bureau 2017).

2. The use of differential privacy for census data and its impact on redistricting: The case of the 2020 U.S. Census

3. J. Abowd R. Ashmead R. Cumings-Menon S. Garfinkel M. Heineck C. Heiss R. Johns D. Kifer P. Leclerc A. Machanavajjhala B. Moran W. Sexton M. Spence P. Zhuravlev The 2020 Census Disclosure Avoidance System TopDown Algorithm Harvard Data Science Review (2022); https://hdsr.mitpress.mit.edu/pub/7evz361i.

4. L. McKenna “Disclosure avoidance techniques used for the 1970 through 2010 decennial censuses of population and housing ” (Tech. Rep. CES-18-47 Research and Methodology Directorate U.S. Census Bureau 2018).

5. Differential Privacy and Census Data: Implications for Social and Economic Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3