Tissue-preferential recruitment of electron transfer chains for cytochrome P450-catalyzed phenolic biosynthesis

Author:

Zhao Xianhai1ORCID,Zhao Yunjun1ORCID,Gou Mingyue1ORCID,Liu Chang-Jun1ORCID

Affiliation:

1. Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.

Abstract

Cytochrome P450 system consists of P450 monooxygenase and redox pattern(s). While the importance of monooxygenases in plant metabolism is well documented, the metabolic roles of the related redox components have been largely overlooked. Here, we show that distinct electron transfer chains are recruited in phenylpropanoid-monolignol P450 systems to support the synthesis and distribution of different classes of phenolics in different plant tissues. While Arabidopsis cinnamate 4-hydroxylase adopts conventional NADPH-cytochrome P450 oxidoreductase (CPR) electron transfer chain for its para -hydroxylation reaction, ferulate 5-hydroxylase uses both NADPH-CPR-cytochrome b 5 (CB5) and NADH–cytochrome b 5 reductase–CB5 chains to support benzene ring 5-hydroxylation, in which the former route is primarily recruited in the stem for syringyl lignin synthesis, while the latter dominates in the syntheses of 5-hydroxylated phenolics in seeds and seed coat suberin. Our study unveils an additional layer of complexity and versatility of P450 system that the plants evolved for diversifying phenolic repertoires.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3