Affiliation:
1. Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
Abstract
Cytochrome P450 system consists of P450 monooxygenase and redox pattern(s). While the importance of monooxygenases in plant metabolism is well documented, the metabolic roles of the related redox components have been largely overlooked. Here, we show that distinct electron transfer chains are recruited in phenylpropanoid-monolignol P450 systems to support the synthesis and distribution of different classes of phenolics in different plant tissues. While
Arabidopsis
cinnamate 4-hydroxylase adopts conventional NADPH-cytochrome P450 oxidoreductase (CPR) electron transfer chain for its
para
-hydroxylation reaction, ferulate 5-hydroxylase uses both NADPH-CPR-cytochrome
b
5
(CB5) and NADH–cytochrome
b
5
reductase–CB5 chains to support benzene ring 5-hydroxylation, in which the former route is primarily recruited in the stem for syringyl lignin synthesis, while the latter dominates in the syntheses of 5-hydroxylated phenolics in seeds and seed coat suberin. Our study unveils an additional layer of complexity and versatility of P450 system that the plants evolved for diversifying phenolic repertoires.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献