Mechanical morphotype switching as an adaptive response in mycobacteria

Author:

Eskandarian Haig Alexander12ORCID,Chen Yu-Xiang1ORCID,Toniolo Chiara3ORCID,Belardinelli Juan M.4ORCID,Palcekova Zuzana4ORCID,Hom Lesley1ORCID,Ashby Paul D.25ORCID,Fantner Georg E.6ORCID,Jackson Mary4ORCID,McKinney John D.3ORCID,Javid Babak1ORCID

Affiliation:

1. Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA.

2. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.

4. Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.

5. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. School of Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.

Abstract

Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of “mechanical morphotype switching” in mycobacteria exposed to host intracellular stress. A “soft” mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3