Affiliation:
1. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
2. Optics Valley Laboratory, Wuhan, Hubei 430074, China.
Abstract
Structural wrinkles in nature have been widely imitated to enhance the surface functionalities of objects, especially three-dimensional (3D) architectured wrinkles, holding promise for emerging applications in mechanical, electrical, and biological processes. However, the fabrication of user-defined 3D nanowrinkled architectures is a long-pending challenge. Here, we propose a bottom-up laser direct assembly strategy to fabricate multidimensional nanowrinkled architectures in a single-material one-step process. Through the introduction of laser-induced thermal transition into a 3D nanoprinting process for leading the point-by-point nanoscale wrinkling and the self-organization of wrinkle structures, we have demonstrated the program-controlled and on-demand fabrication of multidimensional nanowrinkled structures. Moreover, the precise control of wrinkle morphology with an optimal wavelength of 40 nanometers and the regulation of the dynamic transformation of wrinkled cellular microstructures via interfacial stress mismatch engineering have been achieved. This study provides a universal protocol for constructing nearly arbitrary nanowrinkled architectures and facilitates a new paradigm in nanostructure manufacturing.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献