Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology

Author:

Casey John R.12ORCID,Boiteau Rene M.3ORCID,Engqvist Martin K. M.4ORCID,Finkel Zoe V.5ORCID,Li Gang4ORCID,Liefer Justin6ORCID,Müller Christian L.7ORCID,Muñoz Nathalie8ORCID,Follows Michael J.1ORCID

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

2. School of Ocean and Earth Science and Technology, University of Hawai‘i at Mnoa, Honolulu, HI, USA.

3. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA.

4. Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.

5. Department of Oceanography, Dalhousie University, Halifax, NS, Canada.

6. Department of Biology, Mount Allison University, Sackville, NB, Canada.

7. Center for Computational Mathematics, Flatiron Institute, New York, NY, USA.

8. Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, WA, USA.

Abstract

Extensive microdiversity within Prochlorococcus , the most abundant marine cyanobacterium, occurs at scales from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic potential, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical compositions of 69 sequenced isolates spanning the Prochlorococcus pangenome. Optimizing each strain to the local, observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche subspaces directly attributable to differences in their encoded metabolic potential. Predicted growth rates covaried with observed ecotype abundances, affirming their significance as a measure of fitness and inferring a nonlinear density dependence of mortality. Our study demonstrates the potential to interpret global-scale ecosystem organization in terms of cellular-scale processes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3