Affiliation:
1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
Abstract
Bioproduction of 1-alkenes from naturally abundant free fatty acids offers a promising avenue toward the next generation of hydrocarbon-based biofuels and green commodity chemicals. UndB is the only known membrane-bound 1-alkene–producing enzyme, with great potential for 1-alkene bioproduction, but the enzyme exhibits limited turnovers, thus restricting its widespread usage. Here, we explore the molecular basis of the limitation of UndB activity and substantially improve its catalytic power. We establish that the enzyme undergoes peroxide-mediated rapid inactivation during catalysis. To counteract this inactivation, we engineered a chimeric membrane enzyme by conjugating UndB with catalase that protected UndB against peroxide and enhanced its number of turnovers tremendously. Notably, our chimeric enzyme is the only example of a membrane enzyme successfully engineered with catalase. We subsequently constructed a whole-cell biocatalytic system and achieved remarkable efficiencies (up to 95%) in the biotransformation of a wide range of fatty acids (both aliphatic and aromatic) into corresponding 1-alkenes with numerous biotechnological applications.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献