Transcription factor–nucleosome dynamics from plasma cfDNA identifies ER-driven states in breast cancer

Author:

Rao Satyanarayan12ORCID,Han Amy L.3ORCID,Zukowski Alexis12ORCID,Kopin Etana3,Sartorius Carol A.4ORCID,Kabos Peter235ORCID,Ramachandran Srinivas125ORCID

Affiliation:

1. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA.

2. RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA.

3. Department of Medicine/Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA.

4. Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.

5. University of Colorado Cancer Center, Aurora, CO, USA.

Abstract

Genome-wide binding profiles of estrogen receptor (ER) and FOXA1 reflect cancer state in ER + breast cancer. However, routine profiling of tumor transcription factor (TF) binding is impractical in the clinic. Here, we show that plasma cell-free DNA (cfDNA) contains high-resolution ER and FOXA1 tumor binding profiles for breast cancer. Enrichment of TF footprints in plasma reflects the binding strength of the TF in originating tissue. We defined pure in vivo tumor TF signatures in plasma using ER + breast cancer xenografts, which can distinguish xenografts with distinct ER states. Furthermore, state-specific ER-binding signatures can partition human breast tumors into groups with significantly different ER expression and mortality. Last, TF footprints in human plasma samples can identify the presence of ER + breast cancer. Thus, plasma TF footprints enable minimally invasive mapping of the regulatory landscape of breast cancer in humans and open vast possibilities for clinical applications across multiple tumor types.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3