Increased vesicle fusion competence underlies long-term potentiation at hippocampal mossy fiber synapses

Author:

Fukaya Ryota12ORCID,Hirai Himawari1ORCID,Sakamoto Hirokazu3ORCID,Hashimotodani Yuki1ORCID,Hirose Kenzo34ORCID,Sakaba Takeshi1ORCID

Affiliation:

1. Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.

2. Institute of Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany.

3. Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

4. International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

Presynaptic long-term potentiation (LTP) is thought to play an important role in learning and memory. However, the underlying mechanism remains elusive because of the difficulty of direct recording during LTP. Hippocampal mossy fiber synapses exhibit pronounced LTP of transmitter release after tetanic stimulation and have been used as a model of presynaptic LTP. Here, we induced LTP by optogenetic tools and applied direct presynaptic patch-clamp recordings. The action potential waveform and evoked presynaptic Ca 2+ currents remained unchanged after LTP induction. Membrane capacitance measurements suggested higher release probability of synaptic vesicles without changing the number of release-ready vesicles after LTP induction. Synaptic vesicle replenishment was also enhanced. Furthermore, stimulated emission depletion microscopy suggested an increase in the numbers of Munc13-1 and RIM1 molecules within active zones. We propose that dynamic changes in the active zone components may be relevant for the increased fusion competence and synaptic vesicle replenishment during LTP.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3