Targeting gut microbiota–derived kynurenine to predict and protect the remodeling of the pressure-overloaded young heart

Author:

Shi Bozhong1ORCID,Zhang Xiaoyang1ORCID,Song Zhiying2ORCID,Dai Zihao1ORCID,Luo Kai1,Chen Bo1,Zhou Zijie1,Cui Yue1ORCID,Feng Bei1,Zhu Zhongqun1,Zheng Jinghao13ORCID,Zhang Hao13ORCID,He Xiaomin13ORCID

Affiliation:

1. Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China.

2. Department of Pediatric Surgery, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.

3. Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China.

Abstract

Pressure-overloaded left ventricular remodeling in young population is progressive and readily degenerate into heart failure. The aims of this study were to identify a plasma metabolite that predicts and is mechanistically linked to the disease. Untargeted metabolomics determined elevated plasma kynurenine (Kyn) in both the patient cohorts and the mice model, which was correlated with remodeling parameters. In vitro and in vivo evidence, combined with single-nucleus RNA sequencing (snRNA-seq), demonstrated that Kyn affected both cardiomyocytes and cardiac fibroblasts by activating aryl hydrocarbon receptors (AHR) to up-regulate hypertrophy- and fibrosis-related genes. Shotgun metagenomics and fecal microbiota transplantation revealed the existence of the altered gut microbiota-Kyn relationship. Supplementation of selected microbes reconstructed the gut microbiota, reduced plasma Kyn, and alleviated ventricular remodeling. Our data collectively discovered a gut microbiota–derived metabolite to activate AHR and its gene targets in remodeling young heart, a process that could be prevented by specific gut microbiota modulation.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3