Spin-torque–driven antiferromagnetic resonance

Author:

Zhou Yongjian1ORCID,Guo Tingwen12ORCID,Han Lei1ORCID,Liao Liyang1ORCID,He Wenqing3ORCID,Wan Caihua3ORCID,Chen Chong1,Wang Qian1,Qiao Leilei1,Bai Hua1ORCID,Zhu Wenxuan1,Zhang Yichi1,Chen Ruyi1,Han Xiufeng3ORCID,Pan Feng1ORCID,Song Cheng1ORCID

Affiliation:

1. Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.

2. LSI, CEA/DRF/IRAMIS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France.

3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Abstract

The intrinsic fast dynamics make antiferromagnetic spintronics a promising avenue for faster data processing. Ultrafast antiferromagnetic resonance–generated spin current provides valuable access to antiferromagnetic spin dynamics. However, the inverse effect, spin-torque–driven antiferromagnetic resonance (ST-AFMR), which is attractive for practical utilization of fast devices but seriously impeded by difficulties in controlling and detecting Néel vectors, remains elusive. We observe ST-AFMR in Y 3 Fe 5 O 12 /α-Fe 2 O 3 /Pt at room temperature. The Néel vector oscillates and contributes to voltage signal owing to antiferromagnetic negative spin Hall magnetoresistance–induced spin rectification effect, which has the opposite sign to ferromagnets. The Néel vector in antiferromagnetic α-Fe 2 O 3 is strongly coupled to the magnetization in Y 3 Fe 5 O 12 buffer, resulting in the convenient control of Néel vectors. ST-AFMR experiment is bolstered by micromagnetic simulations, where both the Néel vector and the canted moment of α-Fe 2 O 3 are in elliptic resonance. These findings shed light on the spin current–induced dynamics in antiferromagnets and represent a step toward electrically controlled antiferromagnetic terahertz emitters.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3