Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries

Author:

Zheng Jingxu12ORCID,Deng Yue1ORCID,Li Wenzao34ORCID,Yin Jiefu5,West Patrick J.46ORCID,Tang Tian1ORCID,Tong Xiao7ORCID,Bock David C.48ORCID,Jin Shuo5ORCID,Zhao Qing5ORCID,Garcia-Mendez Regina5ORCID,Takeuchi Kenneth J.3468ORCID,Takeuchi Esther S.3468ORCID,Marschilok Amy C.3468ORCID,Archer Lynden A.15ORCID

Affiliation:

1. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.

2. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3. Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

4. Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794, USA.

5. Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

6. Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

7. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.

8. Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.

Abstract

How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate—neither too weak nor too strong—enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode–to–positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference65 articles.

1. How a century of ammonia synthesis changed the world

2. Catalytic reforming;Sterba M. J.;Ind. Eng. Chem. Prod. Res. Dev.,1976

3. The Water-Gas Shift Reaction

4. G. C. Bond Heterogeneous Catalysis (Oxford Univ. Press 1987).

5. Understanding catalysis

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3