Persistent and responsive collective motion with adaptive time delay

Author:

Chen Zhihan1ORCID,Zheng Yuebing12ORCID

Affiliation:

1. Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.

2. Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

Abstract

It is beneficial for collective structures to simultaneously have high persistence to environmental noise and high responsivity to nontrivial external stimuli. However, without the ability to differentiate useful information from noise, there is always a tradeoff between persistence and responsivity within the collective structures. To address this, we propose adaptive time delay inspired by the adaptive behavior observed in the school of fish. This strategy is tested using particles powered by optothermal fields coupled with an optical feedback-control system. By applying the adaptive time delay with a proper threshold, we experimentally observe the responsivity of the collective structures enhanced by approximately 1.6 times without sacrificing persistence. Furthermore, we integrate adaptive time delay with long-distance transportation and obstacle-avoidance capabilities to prototype adaptive swarm microrobots. This research demonstrates the potential of adaptive time delay to address the persistence-responsivity tradeoff and lays the foundation for intelligent swarm micro/nanorobots operating in complex environments.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3