Interference of flagellar rotation up-regulates the expression of small RNA contributing to Bordetella pertussis infection

Author:

Hiramatsu Yukihiro1ORCID,Nishida Takashi1ORCID,Nugraha Dendi Krisna1ORCID,Osada-Oka Mayuko2ORCID,Nakane Daisuke3ORCID,Imada Katsumi4ORCID,Horiguchi Yasuhiko15ORCID

Affiliation:

1. Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

2. Food Hygiene and Environmental Health, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan.

3. Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.

4. Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.

5. Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan.

Abstract

Bacterial small RNAs (sRNAs) posttranscriptionally regulate gene expressions involved in various biological processes, including pathogenicity. Our previous study identified sRNAs, the expression of which was up-regulated in Bordetella pertussis , the causative agent of whooping cough, upon tracheal colonization of the bacteria; however, their roles in bacterial infection remain unknown. Here, we found that one sRNA, Bpr4, contributes to B. pertussis infection by posttranscriptionally up-regulating filamentous hemagglutinin (FHA), a major adhesin of the bacteria. Bpr4 bound to the 5′ untranslated region of fhaB mRNA encoding FHA and inhibited its degradation mediated by RNaseE. Our results demonstrated that Bpr4 up-regulation was triggered by the interference of flagellar rotation, which caused the disengagement of MotA, a flagellar stator. Subsequently, MotA activated a diguanylate cyclase to generate cyclic di-GMP, which plays a role in Bpr4 up-regulation through the RisK/RisA two-component system. Our findings indicate that a flagellum-triggered sensory system contributes to B. pertussis infection.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3