Ultrafast x-ray detection of low-spin iron in molten silicate under deep planetary interior conditions

Author:

Shim Sang-Heon1ORCID,Ko Byeongkwan1,Sokaras Dimosthenis2ORCID,Nagler Bob2ORCID,Lee He Ja2ORCID,Galtier Eric2ORCID,Glenzer Siegfried2ORCID,Granados Eduardo2,Vinci Tommaso3ORCID,Fiquet Guillaume4ORCID,Dolinschi Jonathan1ORCID,Tappan Jackie1,Kulka Britany1ORCID,Mao Wendy L.25ORCID,Morard Guillaume46ORCID,Ravasio Alessandra3ORCID,Gleason Arianna25ORCID,Alonso-Mori Roberto2ORCID

Affiliation:

1. School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.

2. SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA.

3. Laboratoire pour l’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

4. Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d’Histoire Naturelle, UMR CNRS 7590, 4 Place Jussieu, 75005 Paris, France.

5. Department of Earth and Planetary Sciences, Stanford University, Stanford CA 94305, USA.

6. Université Grenoble Alpes, Universé Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France.

Abstract

The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3