Surface-modified, dye-sensitized niobate nanosheets enabling an efficient solar-driven Z-scheme for overall water splitting

Author:

Nishioka Shunta1ORCID,Hojo Koya1ORCID,Xiao Langqiu2ORCID,Gao Tianyue2,Miseki Yugo3ORCID,Yasuda Shuhei4ORCID,Yokoi Toshiyuki4,Sayama Kazuhiro3ORCID,Mallouk Thomas E.25ORCID,Maeda Kazuhiko1ORCID

Affiliation:

1. Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

2. Department of Chemistry, University of Pennsylvania, 231 S. 34th Street Philadelphia, PA 19104, USA.

3. Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), West, 16-1, Onogawa, Tsukuba, Ibaraki 305-8569, Japan.

4. Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

5. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.

Abstract

While dye-sensitized metal oxides are good candidates as H 2 evolution photocatalysts for solar-driven Z-scheme water splitting, their solar-to-hydrogen (STH) energy conversion efficiencies remain low because of uncontrolled charge recombination reactions. Here, we show that modification of Ru dye–sensitized, Pt-intercalated HCa 2 Nb 3 O 10 nanosheets ( Ru /Pt/HCa 2 Nb 3 O 10 ) with both amorphous Al 2 O 3 and poly(styrenesulfonate) (PSS) improves the STH efficiency of Z-scheme overall water splitting by a factor of ~100, when the nanosheets are used in combination with a WO 3 -based O 2 evolution photocatalyst and an I 3 /I redox mediator, relative to an analogous system that uses unmodified Ru /Pt/HCa 2 Nb 3 O 10 . By using the optimized photocatalyst, PSS/ Ru /Al 2 O 3 /Pt/HCa 2 Nb 3 O 10 , a maximum STH of 0.12% and an apparent quantum yield of 4.1% at 420 nm were obtained, by far the highest among dye-sensitized water splitting systems and comparable to conventional semiconductor-based suspended particulate photocatalyst systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3