The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature

Author:

Correy Galen J.1ORCID,Kneller Daniel W.23,Phillips Gwyndalyn23ORCID,Pant Swati23,Russi Silvia4ORCID,Cohen Aina E.4ORCID,Meigs George56ORCID,Holton James M.456ORCID,Gahbauer Stefan7ORCID,Thompson Michael C.8ORCID,Ashworth Alan9ORCID,Coates Leighton310ORCID,Kovalevsky Andrey23ORCID,Meilleur Flora211ORCID,Fraser James S.1ORCID

Affiliation:

1. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.

2. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

3. National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA.

4. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

5. Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.

7. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.

8. Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA 95343, USA.

9. Helen Diller Family Comprehensive Cancer, University of California, San Francisco, San Francisco, CA 94158, USA.

10. Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

11. Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.

Abstract

The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose–bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3