Source reservoir controls on the size, frequency, and composition of large-scale volcanic eruptions

Author:

Booth Catherine A.1ORCID,Jackson Matthew D.1ORCID,Sparks R. Stephen J.2ORCID,Rust Alison C.2ORCID

Affiliation:

1. Department of Earth Science and Engineering, Imperial College London, London, UK.

2. School of Earth Sciences, University of Bristol, Bristol, UK.

Abstract

Large-scale, explosive volcanic eruptions are one of the Earth’s most hazardous natural phenomena. We demonstrate that their size, frequency, and composition can be explained by processes in long-lived, high-crystallinity source reservoirs that control the episodic creation of large volumes of eruptible silicic magma and its delivery to the subvolcanic chamber where it is stored before eruption. Melt percolates upward through the reservoir and accumulates a large volume of low-crystallinity silicic magma which remains trapped until buoyancy causes magma-driven fractures to propagate into the overlying crust, allowing rapid magma transfer from the reservoir into the chamber. Ongoing melt percolation in the reservoir accumulates a new magma layer and the process repeats. Our results suggest that buoyancy, rather than crystallinity, is the key control on magma delivery from the source reservoir. They identify an optimum reservoir size for the largest silicic eruptions that is consistent with data from natural systems and explain why larger magnitude eruptions are not observed on Earth.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3