Fundamental mechanistic insights into the catalytic reactions of Li─S redox by Co single-atom electrocatalysts via operando methods

Author:

Xu Weixuan1ORCID,Lang Shuangyan1ORCID,Wang Kaiyang2ORCID,Zeng Rui1ORCID,Li Huiqi1ORCID,Feng Xinran1ORCID,Krumov Mihail R.1ORCID,Bak Seong-Min3ORCID,Pollock Christopher J.4ORCID,Yeo Jingjie5ORCID,Du Yonghua6ORCID,Abruña Héctor D.1ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

2. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.

3. Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

4. Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA.

5. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

6. National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.

Abstract

Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS). The real-time observations, based on potentiostatic measurements, indicate that Co-SAs/NC efficiently accelerates the lithium-sulfur reduction/oxidation reactions, which display zero-order kinetics. Under galvanostatic discharge conditions, the typical stepwise mechanism of long-chain and intermediate-chain polysulfides is transformed to a concurrent pathway under electrocatalysis. In addition, operando cobalt K-edge XAS studies elucidate the potential-dependent evolution of cobalt’s oxidation state and the formation of cobalt-sulfur bonds. Our work provides fundamental insights into the mechanisms of catalyzed lithium-sulfur reactions via operando methods, enabling a deeper understanding of electrocatalysis and interfacial dynamics in electrical energy storage systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3