A synchronous-twisting method to realize radial scalability in fibrous energy storage devices

Author:

Zhou Zhenyu1ORCID,Xie Sijie1ORCID,Cai Heng1,Colli Alejandro N.12ORCID,Monnens Wouter1,Zhang Qichong3ORCID,Guo Wei1ORCID,Zhang Wei1,Han Ning1,Pan Hongwei1ORCID,Zhang Xueliang1,Pan Hui1,Xue Zhenhong1,Zhang Xuan14ORCID,Yao Yagang3ORCID,Zhang Jin5ORCID,Fransaer Jan1ORCID

Affiliation:

1. Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium.

2. Universidad Nacional del Litoral, CONICET, Programa de Electroquímica Aplicada e Ingeniería Electroquímica (PRELINE), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina.

3. National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.

4. ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.

5. College of Chemical and Molecular Engineering, Peking University, Beijing 100871, China.

Abstract

For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO 2 batteries and MoS 2 -MnO 2 supercapacitors with a diameter of ~500 μm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter −1 for Zn-MnO 2 batteries and ~107 Wh liter −1 for MoS 2 -MnO 2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3