Deeply nonlinear excitation of self-normalized short spin waves

Author:

Wang Qi1234ORCID,Verba Roman5ORCID,Heinz Björn6ORCID,Schneider Michael6,Wojewoda Ondřej7ORCID,Davídková Kristýna7ORCID,Levchenko Khrystyna2,Dubs Carsten8ORCID,Mauser Norbert J.34,Urbánek Michal7ORCID,Pirro Philipp6ORCID,Chumak Andrii V.23ORCID

Affiliation:

1. School of Physics, Huazhong University of Science and Technology, Wuhan, China.

2. Faculty of Physics, University of Vienna, Vienna, Austria.

3. Research Platform Mathematics-Magnetism-Materials, Faculty of Math, University of Vienna, Vienna, Austria.

4. Wolfgang Pauli Institute, Vienna, Austria.

5. Institute of Magnetism, Kyiv, Ukraine.

6. Fachbereich Physik and Landesforschungszentrum OPTIMAS, Rheinland-Pfälzische Technische Universität Kaiserlautern-Landau, Kaiserslautern, Germany.

7. CEITEC BUT, Brno University of Technology, Brno, Czech Republic.

8. INNOVENT e.V., Technologieentwicklung, Jena, Germany.

Abstract

Spin waves are ideal candidates for wave-based computing, but the construction of magnetic circuits is blocked by a lack of an efficient mechanism to excite long-running exchange spin waves with normalized amplitudes. Here, we solve the challenge by exploiting a deeply nonlinear phenomenon for forward volume spin waves in 200-nm-wide nanoscale waveguides and validate our concept using microfocused Brillouin light scattering spectroscopy. An unprecedented nonlinear frequency shift of more than 2 GHz is achieved, corresponding to a magnetization precession angle of 55° and enabling the excitation of spin waves with wavelengths down to 200 nm. The amplitude of the excited spin waves is constant and independent of the input microwave power due to the self-locking nonlinear shift, enabling robust adjustment of the spin-wave amplitudes in future on-chip magnonic integrated circuits.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3