Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene

Author:

Mehew Jake Dudley1ORCID,Merino Rafael Luque234ORCID,Ishizuka Hiroaki5ORCID,Block Alexander1ORCID,Mérida Jaime Díez234ORCID,Carlón Andrés Díez234ORCID,Watanabe Kenji6ORCID,Taniguchi Takashi7ORCID,Levitov Leonid S.8ORCID,Efetov Dmitri K.34,Tielrooij Klaas-Jan19ORCID

Affiliation:

1. Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain.

2. ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology (BIST), Castelldefels 08860, Spain.

3. Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany.

4. Munich Center for Quantum Science and Technology (MCQST), München, Germany.

5. Department of Physics, Tokyo Institute of Technology, Tokyo, Japan.

6. Research Center for Functional Materials, National Institute for Material Sciences, Tsukuba, Japan.

7. International Center for Materials Nanoarchitectonics, National Institute for Material Sciences, Tsukuba, Japan.

8. Department of Physics, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA.

9. Department of Applied Physics, TU Eindhoven, Den Dolech 2, Eindhoven 5612 AZ, Netherlands.

Abstract

Understanding electron-phonon interactions is fundamentally important and has crucial implications for device applications. However, in twisted bilayer graphene near the magic angle, this understanding is currently lacking. Here, we study electron-phonon coupling using time- and frequency-resolved photovoltage measurements as direct and complementary probes of phonon-mediated hot-electron cooling. We find a remarkable speedup in cooling of twisted bilayer graphene near the magic angle: The cooling time is a few picoseconds from room temperature down to 5 kelvin, whereas in pristine bilayer graphene, cooling to phonons becomes much slower for lower temperatures. Our experimental and theoretical analysis indicates that this ultrafast cooling is a combined effect of superlattice formation with low-energy moiré phonons, spatially compressed electronic Wannier orbitals, and a reduced superlattice Brillouin zone. This enables efficient electron-phonon Umklapp scattering that overcomes electron-phonon momentum mismatch. These results establish twist angle as an effective way to control energy relaxation and electronic heat flow.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3