Metal-carbide eutectics with multiprincipal elements make superrefractory alloys

Author:

Wei Qinqin12ORCID,Xu Xiandong1ORCID,Shen Qiang2ORCID,Luo Guoqiang2ORCID,Zhang Jian2ORCID,Li Jia3ORCID,Fang Qihong3ORCID,Liu Chain-Tsuan4ORCID,Chen Mingwei5ORCID,Nieh Tai-Gang6ORCID,Chen Jianghua17ORCID

Affiliation:

1. Centre for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

2. State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.

4. College of Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.

5. Department of Materials Science and Engineering and Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD 21218, USA.

6. Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.

7. Pico Electron Microscopy Center, College of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China.

Abstract

Materials with excellent high-temperature strength are now sought for applications in hypersonics, fusion reactors, and aerospace technologies. Conventional alloys and eutectic multiprincipal-element alloys (MPEAs) exhibit insufficient strengths at high temperatures due to low melting points and microstructural instabilities. Here, we report a strategy to achieve exceptional high-temperature microstructural stability and strength by introducing eutectic carbide in a refractory MPEA. The synergistic strengthening effects from the multiprincipal-element mixing and strong dislocation blocking at the interwoven metal-carbide interface make the eutectic MPEA not only have outstanding high-temperature strength (>2 GPa at 1473 K) but also alleviate the room-temperature brittleness through microcrack tip blunting by layered metallic phase. This strategy offers a paradigm for the design of the next-generation high-temperature materials to bypass the low–melting point limitation of eutectic alloys and diffusion-dominated softening in conventional superalloys.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3