Robust parahydrogen-induced polarization at high concentrations

Author:

Dagys Laurynas12ORCID,Korzeczek Martin C.3ORCID,Parker Anna J.1ORCID,Eills James14ORCID,Blanchard John W.5ORCID,Bengs Christian67,Levitt Malcolm H.6ORCID,Knecht Stephan1ORCID,Schwartz Ilai1ORCID,Plenio Martin B.3ORCID

Affiliation:

1. NVision Imaging Technologies GmbH, Wolfgang-Paul Straße 2, 89081 Ulm, Germany.

2. Institute of Chemical Physics, Vilnius University, Saulėtekio av. 3, Vilnius LT10257, Lithuania.

3. Institut für Theoretische Physik and IQST, Albert-Einstein Allee 11, Universität Ulm, 89081 Ulm, Germany.

4. Institute of Bioengineering of Catalonia, 08028 Barcelona, Spain.

5. Quantum Technology Center, University of Maryland, College Park, MD 20742, USA.

6. School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.

7. Department of Chemistry, University of California, Berkeley, CA 94720, USA.

Abstract

Parahydrogen-induced polarization (PHIP) is a potent technique for generating target molecules with high nuclear spin polarization. The PHIP process involves a chemical reaction between parahydrogen and a target molecule, followed by the transformation of nuclear singlet spin order into magnetization of a designated target nucleus through magnetic field manipulations. Although the singlet-to-magnetization polarization transfer process works effectively at moderate concentrations, it is observed to become much less efficient at high molar polarization, defined as the product of polarization and concentration. This strong dependence on the molar polarization is attributed to interference due to the field produced by the sample magnetization during polarization transfer, which leads to complex dynamics and can severely affect the scalability of the technique. We address this challenge with a pulse sequence that suppresses the influence of the distant dipolar field, while simultaneously achieving singlet-to-magnetization polarization transfer to the desired target spins, free from restrictions on the molar polarization.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3