Toward highly effective loading of DNA in hydrogels for high-density and long-term information storage

Author:

Fei Zhongjie12ORCID,Gupta Nupur234ORCID,Li Mengjie1,Xiao Pengfeng1ORCID,Hu Xiao24ORCID

Affiliation:

1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

2. School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

3. Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798, Singapore.

4. Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.

Abstract

Digital information, when converted into a DNA sequence, provides dense, stable, energy-efficient, and sustainable data storage. The most stable method for encapsulating DNA has been in an inorganic matrix of silica, iron oxide, or both, but are limited by low DNA uptake and complex recovery techniques. This study investigated a rationally designed thermally responsive functionally graded (TRFG) hydrogel as a simple and cost-effective method for storing DNA. The TRFG hydrogel shows high DNA uptake, long-term protection, and reusability due to nondestructive DNA extraction. The high loading capacity was achieved by directly absorbing DNA from the solution, which is then retained because of its interaction with a hyperbranched cationic polymer loaded into a negatively charged hydrogel matrix used as a support and because of its thermoresponsive nature, which allows DNA concentration within the hydrogel through multiple swelling/deswelling cycles. We were able to achieve a high DNA data density of 7.0 × 10 9 gigabytes per gram using a hydrogel-based system.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3