Hydration layer structure modulates superlubrication by trivalent La 3+ electrolytes

Author:

Han Tianyi12ORCID,Cao Wei3ORCID,Xu Zhi1ORCID,Adibnia Vahid2ORCID,Olgiati Matteo4,Valtiner Markus4,Ma Liran1ORCID,Zhang Chenhui1ORCID,Ma Ming15ORCID,Luo Jianbin1ORCID,Banquy Xavier267ORCID

Affiliation:

1. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.

2. Faculty of Pharmacy, Université de Montréal, Montreal, Québec H3C 3J7, Canada.

3. Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel.

4. Institute of Applied Physics, Vienna University of Technology, Vienna A-1040, Austria.

5. Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.

6. Department of Chemistry, Faculty of Art and Science, Université de Montréal, Montreal, Québec H3C 3J7, Canada.

7. Institute of Biomedical Engineering, Faculty of Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada.

Abstract

Water-based lubricants provide lubrication of rubbing surfaces in many technical, biological, and physiological applications. The structure of hydrated ion layers adsorbed on solid surfaces that determine the lubricating properties of aqueous lubricants is thought to be invariable in hydration lubrication. However, we prove that the ion surface coverage dictates the roughness of the hydration layer and its lubricating properties, especially under subnanometer confinement. We characterize different hydration layer structures on surfaces lubricated by aqueous trivalent electrolytes. Two superlubrication regimes are observed with friction coefficients of 10 −4 and 10 −3 , depending on the structure and thickness of the hydration layer. Each regime exhibits a distinct energy dissipation pathway and a different dependence to the hydration layer structure. Our analysis supports the idea of an intimate relationship between the dynamic structure of a boundary lubricant film and its tribological properties and offers a framework to study such relationship at the molecular level.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3