Attosecond chronoscopy of the photoemission near a bandgap of a single-element layered dielectric

Author:

Potamianos Dionysios1ORCID,Schnitzenbaumer Maximilian1,Lemell Christoph2ORCID,Scigalla Pascal1ORCID,Libisch Florian2ORCID,Schock-Schmidtke Eckhard1ORCID,Haimerl Michael1,Schröder Christian1,Schäffer Martin1ORCID,Küchle Johannes T.1,Riemensberger Johann3ORCID,Eberle Karl1,Cui Yang45ORCID,Kleineberg Ulf45,Burgdörfer Joachim2,Barth Johannes V.1,Feulner Peter1,Allegretti Francesco1ORCID,Kienberger Reinhard1ORCID

Affiliation:

1. Physik Department, Technische Universität München, Garching, 85748, Germany.

2. Institute for Theoretical Physics, Vienna University of Technology, Vienna, 1040, Austria.

3. Laboratory of Photonics and Quantum Measurements, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.

4. Max-Planck Institut für Quantenoptik, Garching, 85748, Germany.

5. Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, 85748, Germany.

Abstract

We report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region ( E ≈ 100 eV) of the band structure. The present attosecond chronoscopy experiments reveal an energy-dependent increase of the photoemission time delay when the final state energy of the excited electrons lies in the vicinity of the bandgap providing information difficult to access by conventional spectroscopy. Accompanying simulations further corroborate our interpretation.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3