Magnetic resonance insights into the heterogeneous, fractal-like kinetics of chemically recyclable polymers

Author:

Fricke Sophia N.1ORCID,Haber Shira2ORCID,Hua Mutian2ORCID,Salgado Mia1,Helms Brett A.23ORCID,Reimer Jeffrey A.12ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.

2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Moving toward a circular plastics economy is a vital aspect of global resource management. Chemical recycling of plastics ensures that high-value monomers can be recovered from depolymerized plastic waste, thus enabling circular manufacturing. However, to increase chemical recycling throughput in materials recovery facilities, the present understanding of polymer transport, diffusion, swelling, and heterogeneous deconstruction kinetics must be systematized to allow industrial-scale process design, spanning molecular to macroscopic regimes. To develop a framework for designing depolymerization processes, we examined acidolysis of circular polydiketoenamine elastomers. We used magnetic resonance to monitor spatially resolved observables in situ and then evaluated these data with a fractal method that treats nonlinear depolymerization kinetics. This approach delineated the roles played by network architecture and reaction medium on depolymerization outcomes, yielding parameters that facilitate comparisons between bulk processes. These streamlined methods to investigate polymer hydrolysis kinetics portend a general strategy for implementing chemical recycling on an industrial scale.

Publisher

American Association for the Advancement of Science (AAAS)

Reference64 articles.

1. World Economic Forum Ellen MacArthur Foundation and McKinsey & Company “The New Plastics Economy: Rethinking the future of plastics” (World Economic Forum 2016).

2. United Nations Environment Programme Ellen MacArthur Foundation “The Global Commitment 2020 Progress Report” (United Nations Environment Programme 2019).

3. Ellen MacArthur Foundation “The New Plastics Economy: Catalysing action” (2017).

4. Chemical recycling of waste plastics for new materials production

5. M. H. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley ed. 2 2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3