SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence

Author:

Fang Wei123ORCID,Chen Yanqi12ORCID,Ding Jianhao1ORCID,Yu Zhaofei4ORCID,Masquelier Timothée5ORCID,Chen Ding26ORCID,Huang Liwei12,Zhou Huihui2ORCID,Li Guoqi78ORCID,Tian Yonghong123ORCID

Affiliation:

1. School of Computer Science, Peking University, China.

2. Peng Cheng Laboratory, China.

3. School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, China.

4. Institute for Artificial Intelligence, Peking University, China.

5. Centre de Recherche Cerveau et Cognition (CERCO), UMR5549 CNRS–Université Toulouse 3, France.

6. Department of Computer Science and Engineering, Shanghai Jiao Tong University, China.

7. Institute of Automation, Chinese Academy of Sciences, China.

8. School of Artificial Intelligence, University of Chinese Academy of Sciences, China.

Abstract

Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency by introducing neural dynamics and spike properties. As the emerging spiking deep learning paradigm attracts increasing interest, traditional programming frameworks cannot meet the demands of the automatic differentiation, parallel computation acceleration, and high integration of processing neuromorphic datasets and deployment. In this work, we present the SpikingJelly framework to address the aforementioned dilemma. We contribute a full-stack toolkit for preprocessing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips. Compared to existing methods, the training of deep SNNs can be accelerated 11×, and the superior extensibility and flexibility of SpikingJelly enable users to accelerate custom models at low costs through multilevel inheritance and semiautomatic code generation. SpikingJelly paves the way for synthesizing truly energy-efficient SNN-based machine intelligence systems, which will enrich the ecology of neuromorphic computing.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference194 articles.

1. A. Krizhevsky I. Sutskever G. E. Hinton Imagenet classification with deep convolutional neural networks in Advances in Neural Information Processing Systems (NeurIPS) (NeurIPS 2012) pp. 1097–1105.

2. Long Short-Term Memory

3. A. Vaswani N. Shazeer N. Parmar J. Uszkoreit L. Jones A. N. Gomez Ł. Kaiser I. Polosukhin Attention is all you need in Advances in Neural Information Processing Systems (NeurIPS ) (NeurIPS 2017) p. 30.

4. K. Simonyan A. Zisserman Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014). https://doi.org/10.48550/arXiv.1409.1556.

5. C. Szegedy W. Liu Y. Jia P. Sermanet S. Reed D. Anguelov D. Erhan V. Vanhoucke A. Rabinovich in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE 2015) pp. 1–9.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3