The Emu Bay Shale: A unique early Cambrian Lagerstätte from a tectonically active basin

Author:

Gaines Robert R.1ORCID,García-Bellido Diego C.23ORCID,Jago James B.34ORCID,Myrow Paul M.5ORCID,Paterson John R.6ORCID

Affiliation:

1. Geology Department, Pomona College, 185 E. Sixth St., Claremont, CA 91711, USA.

2. School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia.

3. Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

4. University of South Australia–STEM, Mawson Lakes, SA 5095, Australia.

5. Geology Department, Colorado College, Colorado Springs, CO 80903 USA.

6. Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

Abstract

The Emu Bay Shale (EBS) of South Australia is anomalous among Cambrian Lagerstätten because it captures anatomical information that is rare in Burgess Shale–type fossils, and because of its inferred nearshore setting, the nature of which has remained controversial. Intensive study, combining outcrop and borehole data with a compilation of >25,000 fossil specimens, reveals that the EBS biota inhabited a fan delta complex within a tectonically active basin. Preservation of soft-bodied organisms in this setting is unexpected and further underscores differences between the EBS and other Cambrian Lagerstätten. Environmental conditions, including oxygen fluctuations, slope instability, high suspended sediment concentrations, and episodic high-energy events, inhibited colonization of the lower prodelta by all but a few specialist species but favored downslope transportation and preservation of other largely endemic, shallow-water benthos. The EBS provides extraordinary insight into early Cambrian animal diversity from Gondwana. These results demonstrate how environmental factors determined community composition and provide a framework for understanding this unique Konservat-Lagerstätte.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3