Dynamic STEM-EELS for single-atom and defect measurement during electron beam transformations

Author:

Roccapriore Kevin M.1ORCID,Torsi Riccardo2ORCID,Robinson Joshua2ORCID,Kalinin Sergei34ORCID,Ziatdinov Maxim1ORCID

Affiliation:

1. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

2. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

3. Department of Materials Science and Engineering, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA.

4. Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

Abstract

This study introduces the integration of dynamic computer vision–enabled imaging with electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). This approach involves real-time discovery and analysis of atomic structures as they form, allowing us to observe the evolution of material properties at the atomic level, capturing transient states traditional techniques often miss. Rapid object detection and action system enhances the efficiency and accuracy of STEM-EELS by autonomously identifying and targeting only areas of interest. This machine learning (ML)–based approach differs from classical ML in that it must be executed on the fly, not using static data. We apply this technology to V-doped MoS 2 , uncovering insights into defect formation and evolution under electron beam exposure. This approach opens uncharted avenues for exploring and characterizing materials in dynamic states, offering a pathway to increase our understanding of dynamic phenomena in materials under thermal, chemical, and beam stimuli.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3