Mapping nonlocal relationships between metadata and network structure with metadata-dependent encoding of random walks

Author:

Bassolas Aleix123ORCID,Holmgren Anton4ORCID,Marot Antoine5,Rosvall Martin4ORCID,Nicosia Vincenzo1ORCID

Affiliation:

1. School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.

2. Departament d’Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain.

3. Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain.

4. Integrated Science Lab, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden.

5. RTE Réseau de Transport d’Electricité, Paris, France.

Abstract

Integrating structural information and metadata, such as gender, social status, or interests, enriches networks and enables a better understanding of the large-scale structure of complex systems. However, existing approaches to augment networks with metadata for community detection only consider immediately adjacent nodes and cannot exploit the nonlocal relationships between metadata and large-scale network structure present in many spatial and social systems. Here, we develop a flow-based community detection framework based on the map equation that integrates network information and metadata of distant nodes and reveals more complex relationships. We analyze social and spatial networks and find that our methodology can detect functional metadata-informed communities distinct from those derived solely from network information or metadata. For example, in a mobility network of London, we identify communities that reflect the heterogeneity of income distribution, and in a European power grid network, we identify communities that capture relationships between geography and energy prices beyond country borders.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature-aware ultra-low dimensional reduction of real networks;npj Complexity;2024-09-02

2. The latent net effectiveness of institutional complexes: a heuristic model;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-02-26

3. Dual Structural Consistency Preserving Community Detection on Social Networks;IEEE Transactions on Knowledge and Data Engineering;2023-11-01

4. Quantifying Complex Urban Spillover Effects via Physics-based Deep Learning;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3