Unlocking large memory windows and 16-level data per cell memory operations in hafnia-based ferroelectric transistors

Author:

Kim Ik-Jyae1ORCID,Lee Jang-Sik1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

Abstract

Ferroelectric transistors based on hafnia-based ferroelectrics exhibit tremendous potential as next-generation memories owing to their high-speed operation and low power consumption. Nevertheless, these transistors face limitations in terms of memory window, which directly affects their ability to support multilevel characteristics in memory devices. Furthermore, the absence of an efficient operational technique capable of achieving multilevel characteristics has hindered their development. To address these challenges, we present a gate stack engineering method and an efficient operational approach for ferroelectric transistors to achieve 16-level data per cell operation. By using the suggested engineering method, we demonstrate the attainment of a substantial memory window of 10 V without increasing the device area. Additionally, we propose a displacement current control method, facilitating one-shot programming to the desired state. Remarkably, we suggest the compatibility of these proposed methods with three-dimensional (3D) structures. This study underscores the potential of ferroelectric transistors for next-generation 3D memory applications.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3