Rapid discovery of stable materials by coordinate-free coarse graining

Author:

Goodall Rhys E. A.1ORCID,Parackal Abhijith S.2ORCID,Faber Felix A.1ORCID,Armiento Rickard2ORCID,Lee Alpha A.1ORCID

Affiliation:

1. Department of Physics, University of Cambridge, Cambridge, UK.

2. Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.

Abstract

A fundamental challenge in materials science pertains to elucidating the relationship between stoichiometry, stability, structure, and property. Recent advances have shown that machine learning can be used to learn such relationships, allowing the stability and functional properties of materials to be accurately predicted. However, most of these approaches use atomic coordinates as input and are thus bottlenecked by crystal structure identification when investigating previously unidentified materials. Our approach solves this bottleneck by coarse-graining the infinite search space of atomic coordinates into a combinatorially enumerable search space. The key idea is to use Wyckoff representations, coordinate-free sets of symmetry-related positions in a crystal, as the input to a machine learning model. Our model demonstrates exceptionally high precision in finding unknown theoretically stable materials, identifying 1569 materials that lie below the known convex hull of previously calculated materials from just 5675 ab initio calculations. Our approach opens up fundamental advances in computational materials discovery.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference73 articles.

1. Computational Screening of All Stoichiometric Inorganic Materials

2. D. K. Duvenaud D. Maclaurin J. Iparraguirre R. Bombarell T. Hirzel A. Aspuru-Guzik R. P. Adams Convolutional networks on graphs for learning molecular fingerprints in Proceedings of Advances In Neural Information Processing Systems 28 (Curran Associates Inc. 2015) pp. 2224–2232.

3. Applications of machine learning in drug discovery and development

4. Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17

5. The Chemical Space Project

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3