Atomistic mechanisms of water vapor–induced surface passivation

Author:

Chen Xiaobo1ORCID,Shan Weitao2ORCID,Wu Dongxiang1,Patel Shyam Bharatkumar1ORCID,Cai Na1,Li Chaoran1,Ye Shuonan1,Liu Zhao3,Hwang Sooyeon4ORCID,Zakharov Dmitri N.4ORCID,Boscoboinik Jorge Anibal4ORCID,Wang Guofeng2ORCID,Zhou Guangwen1ORCID

Affiliation:

1. Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA.

2. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA.

3. Department of Electrical and Computer Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA.

4. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.

Abstract

The microscopic mechanisms underpinning the spontaneous surface passivation of metals from ubiquitous water have remained largely elusive. Here, using in situ environmental electron microscopy to atomically monitor the reaction dynamics between aluminum surfaces and water vapor, we provide direct experimental evidence that the surface passivation results in a bilayer oxide film consisting of a crystalline-like Al(OH) 3 top layer and an inner layer of amorphous Al 2 O 3 . The Al(OH) 3 layer maintains a constant thickness of ~5.0 Å, while the inner Al 2 O 3 layer grows at the Al 2 O 3 /Al interface to a limiting thickness. On the basis of experimental data and atomistic modeling, we show the tunability of the dissociation pathways of H 2 O molecules with the Al, Al 2 O 3 , and Al(OH) 3 surface terminations. The fundamental insights may have practical significance for the design of materials and reactions for two seemingly disparate but fundamentally related disciplines of surface passivation and catalytic H 2 production from water.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3