Liberating a hidden antiferroelectric phase with interfacial electrostatic engineering

Author:

Mundy Julia A.12ORCID,Grosso Bastien F.3ORCID,Heikes Colin A.4ORCID,Ferenc Segedin Dan25,Wang Zhe6,Shao Yu-Tsun6,Dai Cheng7,Goodge Berit H.68ORCID,Meier Quintin N.3ORCID,Nelson Christopher T.9,Prasad Bhagwati1,Xue Fei7,Ganschow Steffen10ORCID,Muller David A.68ORCID,Kourkoutis Lena F.68ORCID,Chen Long-Qing7ORCID,Ratcliff William D.411ORCID,Spaldin Nicola A.3ORCID,Ramesh Ramamoorthy1512ORCID,Schlom Darrell G.81013ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.

2. Department of Physics, Harvard University, Cambridge, MA 02138, USA.

3. Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland.

4. NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20878, USA.

5. Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.

6. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.

7. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

8. Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA.

9. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

10. Leibniz-Institut für Kristallzüchtung, 12489 Berlin, Germany.

11. Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.

12. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

13. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.

Abstract

Antiferroelectric materials have seen a resurgence of interest because of proposed applications in a number of energy-efficient technologies. Unfortunately, relatively few families of antiferroelectric materials have been identified, precluding many proposed applications. Here, we propose a design strategy for the construction of antiferroelectric materials using interfacial electrostatic engineering. We begin with a ferroelectric material with one of the highest known bulk polarizations, BiFeO3. By confining thin layers of BiFeO3in a dielectric matrix, we show that a metastable antiferroelectric structure can be induced. Application of an electric field reversibly switches between this new phase and a ferroelectric state. The use of electrostatic confinement provides an untapped pathway for the design of engineered antiferroelectric materials with large and potentially coupled responses.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3