MoS 2 phononic crystals for advanced thermal management

Author:

Xiao Peng12ORCID,El Sachat Alexandros13ORCID,Angel Emigdio Chávez1ORCID,Ng Ryan C.1ORCID,Nikoulis Giorgos4ORCID,Kioseoglou Joseph45ORCID,Termentzidis Konstantinos6ORCID,Sotomayor Torres Clivia M.17ORCID,Sledzinska Marianna1ORCID

Affiliation:

1. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.

2. Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

3. National Center for Scientific Research “Demokritos,” 15310 Athens, Greece.

4. Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.

5. Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece.

6. Univ Lyon, CNRS, INSA Lyon, CETHIL, UMR5008, 69621 Villeurbanne, France.

7. ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain.

Abstract

Effective thermal management of electronic devices encounters substantial challenges owing to the notable power densities involved. Here, we propose layered MoS 2 phononic crystals (PnCs) that can effectively reduce thermal conductivity (κ) with relatively small disruption of electrical conductivity (σ), offering a potential thermal management solution for nanoelectronics. These layered PnCs exhibit remarkable efficiency in reducing κ, surpassing that of Si and SiC PnCs with similar periodicity by ~100-fold. Specifically, in suspended MoS 2 PnCs, we measure an exceptionally low κ down to 0.1 watts per meter kelvin, below the amorphous limit while preserving the crystalline structure. These findings are supported by molecular dynamics simulations that account for the film thickness, porosity, and temperature. We demonstrate the approach efficiency by fabricating suspended heat-routing structures that effectively confine and guide heat flow in prespecified directions. This study underpins the immense potential of layered materials as directional heat spreaders, thermal insulators, and active components for thermoelectric devices.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3