Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys

Author:

Ming Kaisheng123ORCID,Zhu Zhengwang4ORCID,Zhu Wenqing56ORCID,Fang Ben56ORCID,Wei Bingqiang3ORCID,Liaw Peter K.7ORCID,Wei Xiaoding56ORCID,Wang Jian3ORCID,Zheng Shijian12ORCID

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.

2. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.

3. Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

4. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

5. State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.

6. Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.

7. Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.

Abstract

Crystalline-amorphous composite have the potential to achieve high strength and high ductility through manipulation of their microstructures. Here, we fabricate a TiZr-based alloy with micrometer-size equiaxed grains that are made up of three-dimensional bicontinuous crystalline-amorphous nanoarchitectures (3D-BCANs). In situ tension and compression tests reveal that the BCANs exhibit enhanced ductility and strain hardening capability compared to both amorphous and crystalline phases, which impart ultra-high yield strength (~1.80 GPa), ultimate tensile strength (~2.3 GPa), and large uniform ductility (~7.0%) into the TiZr-based alloy. Experiments combined with finite element simulations reveal the synergetic deformation mechanisms; i.e., the amorphous phase imposes extra strain hardening to crystalline domains while crystalline domains prevent the premature shear localization in the amorphous phases. These mechanisms endow our material with an effective strength–ductility–strain hardening combination.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3