An engineered Sox17 induces somatic to neural stem cell fate transitions independently from pluripotency reprogramming

Author:

Weng Mingxi12ORCID,Hu Haoqing1,Graus Matthew S.34ORCID,Tan Daisylyn Senna1ORCID,Gao Ya1,Ren Shimiao1ORCID,Ho Derek Hoi Hang12,Langer Jakob1ORCID,Holzner Markus1ORCID,Huang Yuhua1ORCID,Ling Guang Sheng1ORCID,Lai Cora Sau Wan15ORCID,Francois Mathias346,Jauch Ralf12ORCID

Affiliation:

1. School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

2. Center for Translational Stem Cell Biology, Hong Kong SAR, China.

3. The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, Camperdown, NSW 2006, Australia.

4. Genome Imaging Centre, The Centenary Institute, Camperdown, NSW 2006, Australia.

5. State Key Laboratory of Cognitive and Brain Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

6. The University of Sydney, School of Medical Sciences, Camperdown, NSW 2006, Australia.

Abstract

Advanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17 FNV ). eSox17 FNV efficiently drives iNSC reprogramming while Sox2 or Sox17 fail. eSox17 FNV acquires the capacity to bind different protein partners on regulatory DNA to scan the genome more efficiently and has a more potent transactivation domain than Sox2. Lineage tracing and time-resolved transcriptomics show that emerging iNSCs do not transit through a pluripotent state. Our work distinguishes lineage from pluripotency reprogramming with the potential to generate more authentic cell models for aging-associated neurodegenerative diseases.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3