Mismatched ligand density enables ordered assembly of mixed-dimensional, cross-species materials

Author:

Li Tongtao12ORCID,Xia Xiuyang34ORCID,Wu Guanhong1,Cai Qingfu2,Lyu Xuanyu2,Ning Jing1ORCID,Wang Jing2,Kuang Min1,Yang Yuchi2,Pica Ciamarra Massimo4ORCID,Ni Ran3ORCID,Yang Dong2ORCID,Dong Angang1ORCID

Affiliation:

1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.

2. State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

3. Chemical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.

4. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

Abstract

The ordered coassembly of mixed-dimensional species—such as zero-dimensional (0D) nanocrystals and 2D microscale nanosheets—is commonly deemed impracticable, as phase separation almost invariably occurs. Here, by manipulating the ligand grafting density, we achieve ordered coassembly of 0D nanocrystals and 2D nanosheets under standard solvent evaporation conditions, resulting in macroscopic, freestanding hybrid-dimensional superlattices with both out-of-plane and in-plane order. The key to suppressing the notorious phase separation lies in hydrophobizing nanosheets with molecular ligands identical to those of nanocrystals but having substantially lower grafting density. The mismatched ligand density endows the two mixed-dimensional components with a molecular recognition-like capability, driving the spontaneous organization of densely capped nanocrystals at the interlayers of sparsely grafted nanosheets. Theoretical calculations reveal that the intercalation of nanocrystals can substantially reduce the short-range repulsions of ligand-grafted nanosheets and is therefore energetically favorable, while subsequent ligand-ligand van der Waals attractions induce the in-plane order and kinetically stabilize the laminate superlattice structure.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3