Strain-induced crystallization and phase separation used for fabricating a tough and stiff slide-ring solid polymer electrolyte

Author:

Hashimoto Kei123ORCID,Shiwaku Toru1,Aoki Hiroyuki45ORCID,Yokoyama Hideaki1ORCID,Mayumi Koichi12ORCID,Ito Kohzo1ORCID

Affiliation:

1. Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.

2. The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.

3. Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

4. Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan.

5. Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka-gun, Ibaraki 319-1195, Japan.

Abstract

The demand for mechanically robust polymer-based electrolytes is increasing for applications to wearable devices. Young’s modulus and breaking energy are essential parameters for describing the mechanical reliability of electrolytes. The former plays a vital role in suppressing the short circuit during charge-discharge, while the latter indicates crack propagation resistance. However, polymer electrolytes with high Young’s moduli are generally brittle. In this study, a tough slide-ring solid polymer electrolyte (SR-SPE) breaking through this trade-off between stiffness and toughness is designed on the basis of strain-induced crystallization (SIC) and phase separation. SIC makes the material highly tough (breaking energy, 80 to 100 megajoules per cubic meter). Phase separation in the polymer enhanced stiffness (Young’s modulus, 10 to 70 megapascals). The combined effect of phase separation and SIC made SR-SPE tough and stiff, while these mechanisms do not impair ionic conductivity. This SIC strategy could be combined with other toughening mechanisms to design tough polymer gel materials.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3