Vacuum ultraviolet nonlinear metalens

Author:

Tseng Ming Lun12ORCID,Semmlinger Michael345,Zhang Ming456,Arndt Catherine345ORCID,Huang Tzu-Ting2ORCID,Yang Jian456,Kuo Hsin Yu7,Su Vin-Cent8ORCID,Chen Mu Ku9ORCID,Chu Cheng Hung2ORCID,Cerjan Benjamin34ORCID,Tsai Din Ping279ORCID,Nordlander Peter346ORCID,Halas Naomi J.34610ORCID

Affiliation:

1. Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

2. Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan.

3. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.

4. Laboratory for Nanophotonics, Rice University, Houston, TX 77005, USA.

5. Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.

6. Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.

7. Department of Physics, National Taiwan University, Taipei 10617, Taiwan.

8. Department of Electrical Engineering, National United University, Miaoli 36003, Taiwan.

9. Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong.

10. Department of Chemistry, Rice University, Houston, TX 77005, USA.

Abstract

Vacuum ultraviolet (VUV) light plays an essential role across science and technology, from molecular spectroscopy to nanolithography and biomedical procedures. Realizing nanoscale devices for VUV light generation and control is critical for next-generation VUV sources and systems, but the scarcity of low-loss VUV materials creates a substantial challenge. We demonstrate a metalens that both generates—by second-harmonic generation—and simultaneously focuses the generated VUV light. The metalens consists of 150-nm-thick zinc oxide (ZnO) nanoresonators that convert 394 nm (~3.15 eV) light into focused 197-nm (~6.29 eV) radiation, producing a spot 1.7 μm in diameter with a 21-fold power density enhancement as compared to the wavefront at the metalens surface. The reported metalens is ultracompact and phase-matching free, allowing substantial streamlining of VUV system design and facilitating more advanced applications. This work provides a useful platform for developing low-loss VUV components and increasing the accessibility of the VUV regime.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3