A genetically encoded far-red fluorescent indicator for imaging synaptically released Zn 2+

Author:

Wu Tianchen1ORCID,Kumar Manoj2ORCID,Zhang Jing1ORCID,Zhao Shengyu13ORCID,Drobizhev Mikhail4,McCollum Mason5ORCID,Anderson Charles T.5ORCID,Wang Ying6ORCID,Pokorny Antje6ORCID,Tian Xiaodong1ORCID,Zhang Yiyu1ORCID,Tzounopoulos Thanos2ORCID,Ai Hui-wang137ORCID

Affiliation:

1. Department of Molecular Physiology and Biological Physics, and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

2. Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA.

3. Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.

4. Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717-384, USA.

5. Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.

6. Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA.

7. The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA.

Abstract

Synaptic zinc ion (Zn 2+ ) has emerged as a key neuromodulator in the brain. However, the lack of research tools for directly tracking synaptic Zn 2+ in the brain of awake animals hinders our rigorous understanding of the physiological and pathological roles of synaptic Zn 2+ . In this study, we developed a genetically encoded far-red fluorescent indicator for monitoring synaptic Zn 2+ dynamics in the nervous system. Our engineered far-red fluorescent indicator for synaptic Zn 2+ (FRISZ) displayed a substantial Zn 2+ -specific turn-on response and low-micromolar affinity. We genetically anchored FRISZ to the mammalian extracellular membrane via a transmembrane (TM) ⍺ helix and characterized the resultant FRISZ-TM construct at the mammalian cell surface. We used FRISZ-TM to image synaptic Zn 2+ in the auditory cortex in acute brain slices and awake mice in response to electric and sound stimuli, respectively. Thus, this study establishes a technology for studying the roles of synaptic Zn 2+ in the nervous system.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3