Affiliation:
1. Department of Physics, The Ohio State University, 191 W Woodruff Ave., Columbus, OH 43210, USA.
Abstract
Spontaneously broken time-reversal symmetry in magnetic materials leads to a Hall response, with a nonzero voltage transverse to an applied current, even in the absence of external magnetic fields. It is common to analyze the Hall resistivity of chiral magnets as the sum of two terms: an anomalous Hall effect arising from spin-orbit coupling and a topological Hall signal coming from skyrmions, which are topologically nontrivial spin textures. The theoretical justification for such a decomposition has long remained an open problem. Using a controlled semiclassical approach that includes all phase-space Berry curvatures, we show that the solution of the Boltzmann equation leads to a Hall resistivity that is just the sum of an anomalous term arising from momentum-space curvature and a topological term related to the real-space curvature. We also present numerically exact results from a Kubo formalism that complement the semiclassical approach.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献