Structure and dynamics of enterovirus genotype networks

Author:

Dábilla Nathânia1ORCID,Dolan Patrick T.1ORCID

Affiliation:

1. Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA.

Abstract

Like all biological populations, viral populations exist as networks of genotypes connected through mutation. Mapping the topology of these networks and quantifying population dynamics across them is crucial to understanding how populations adapt to changes in their selective environment. The influence of mutational networks is especially profound in viral populations that rapidly explore their mutational neighborhoods via high mutation rates. Using a single-cell sequencing method, scRNA-seq–enabled acquisition of mRNA and consensus haplotypes linking individual genotypes and host transcriptomes (SEARCHLIGHT), we captured and assembled viral haplotypes from hundreds of individual infected cells, revealing the complexity of viral population structures. We obtained these genotypes in parallel with host cell transcriptome information, enabling us to link host cell transcriptional phenotypes to the genetic structures underlying virus adaptation. Our examination of these structures reveals the common evolutionary dynamics of enterovirus populations and illustrates how viral populations reach through mutational “tunnels” to span evolutionary landscapes and maintain connection with multiple adaptive genotypes simultaneously.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3