Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface

Author:

Park Jonghwa1ORCID,Kang Dong-hee1ORCID,Chae Heeyoung2ORCID,Ghosh Sujoy Kumar1ORCID,Jeong Changyoon3ORCID,Park Yoojeong1ORCID,Cho Seungse1,Lee Youngoh1ORCID,Kim Jinyoung1,Ko Yujung1,Kim Jae Joon2ORCID,Ko Hyunhyub1ORCID

Affiliation:

1. School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 689-798, Republic of Korea.

2. Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 689-798, Republic of Korea.

3. School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

Abstract

Accurate transmission of biosignals without interference of surrounding noises is a key factor for the realization of human-machine interfaces (HMIs). We propose frequency-selective acoustic and haptic sensors for dual-mode HMIs based on triboelectric sensors with hierarchical macrodome/micropore/nanoparticle structure of ferroelectric composites. Our sensor shows a high sensitivity and linearity under a wide range of dynamic pressures and resonance frequency, which enables high acoustic frequency selectivity in a wide frequency range (145 to 9000 Hz), thus rendering noise-independent voice recognition possible. Our frequency-selective multichannel acoustic sensor array combined with an artificial neural network demonstrates over 95% accurate voice recognition for different frequency noises ranging from 100 to 8000 Hz. We demonstrate that our dual-mode sensor with linear response and frequency selectivity over a wide range of dynamic pressures facilitates the differentiation of surface texture and control of an avatar robot using both acoustic and mechanical inputs without interference from surrounding noise.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3