IrO x · n H 2 O with lattice water–assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers

Author:

Xu Jun1ORCID,Jin Huanyu12ORCID,Lu Teng3ORCID,Li Junsheng4,Liu Yun3ORCID,Davey Kenneth1ORCID,Zheng Yao1ORCID,Qiao Shi-Zhang1ORCID

Affiliation:

1. School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.

2. Institute for Sustainability, Energy and Resources, The University of Adelaide, Adelaide, SA 5005, Australia.

3. Research School of Chemistry, The Australian National University, Canberra, ACT 2600, Australia.

4. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.

Abstract

The trade-off between activity and stability of oxygen evolution reaction (OER) catalysts in proton exchange membrane water electrolyzer (PEMWE) is challenging. Crystalline IrO 2 displays good stability but exhibits poor activity; amorphous IrO x exhibits outstanding activity while sacrificing stability. Here, we combine the advantages of these two materials via a lattice water–incorporated iridium oxide (IrO x · n H 2 O) that has short-range ordered structure of hollandite-like framework. We confirm that IrO x · n H 2 O exhibits boosted activity and ultrahigh stability of >5700 hours (~8 months) with a record-high stability number of 1.9 × 10 7 n oxygen n Ir −1 . We evidence that lattice water is active oxygen species in sustainable and rapid oxygen exchange. The lattice water–assisted modified OER mechanism contributes to improved activity and concurrent stability with no apparent structural degradation, which is different to the conventional adsorbate evolution mechanism and lattice oxygen mechanism. We demonstrate that a high-performance PEMWE with IrO x · n H 2 O as anode electrocatalyst delivers a cell voltage of 1.77 V at 1 A cm −2 for 600 hours (60°C).

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3