Simultaneously enhanced tenacity, rupture work, and thermal conductivity of carbon nanotube fibers by raising effective tube portion

Author:

Zhang Xiao12ORCID,De Volder Michael2ORCID,Zhou Wenbin3ORCID,Issman Liron2,Wei Xiaojun1ORCID,Kaniyoor Adarsh4ORCID,Terrones Portas Jeronimo4,Smail Fiona2ORCID,Wang Zibo1,Wang Yanchun1ORCID,Liu Huaping1ORCID,Zhou Weiya1ORCID,Elliott James4ORCID,Xie Sishen1ORCID,Boies Adam2ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

2. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.

3. MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China.

4. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.

Abstract

Although individual carbon nanotubes (CNTs) are superior to polymer chains, the mechanical and thermal properties of CNT fibers (CNTFs) remain inferior to synthetic fibers because of the failure of embedding CNTs effectively in superstructures. Conventional techniques resulted in a mild improvement of target properties while degrading others. Here, a double-drawing technique is developed to rearrange the constituent CNTs. Consequently, the mechanical and thermal properties of the resulting CNTFs can simultaneously reach their highest performances with specific strength ~3.30 N tex −1 (4.60 GPa), work of rupture ~70 J g −1 , and thermal conductivity ~354 W m −1 K −1 despite starting from low-crystallinity materials ( I G : I D ~ 5). The processed CNTFs are more versatile than comparable carbon fiber, Zylon and Dyneema. On the basis of evidence of load transfer efficiency on individual CNTs measured with in situ stretching Raman, we find that the main contributors to property enhancements are the increasing of the effective tube contribution.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3