A Ni-O-Ag photothermal catalyst enables 103-m 2 artificial photosynthesis with >17% solar-to-chemical energy conversion efficiency

Author:

Li Yaguang1ORCID,Meng Fanqi2,Wu Qixuan1ORCID,Yuan Dachao13ORCID,Wang Haixiao1ORCID,Liu Bang1ORCID,Wang Junwei1ORCID,San Xingyuan1ORCID,Gu Lin2ORCID,Meng Qingbo2ORCID

Affiliation:

1. Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.

2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

3. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, China.

Abstract

The scalable artificial photosynthesis composed of photovoltaic electrolysis and photothermal catalysis is limited by inefficient photothermal CO 2 hydrogenation under weak sunlight irradiation. Herein, NiO nanosheets supported with Ag single atoms [two-dimensional (2D) Ni 1 Ag 0.02 O 1 ] are synthesized for photothermal CO 2 hydrogenation to achieve 1065 mmol g −1 hour −1 of CO production rate under 1-sun irradiation. This performance is attributed to the coupling effect of Ag-O-Ni sites to enhance the hydrogenation of CO 2 and weaken the CO adsorption, resulting in 1434 mmol g −1 hour −1 of CO yield at 300°C. Furthermore, we integrate the 2D Ni 1 Ag 0.02 O 1 -supported photothermal reverse water-gas shift reaction with commercial photovoltaic electrolytic water splitting to construct a 103-m 2 scale artificial photosynthesis system (CO 2 + H 2 O → CO + H 2 + O 2 ), which achieves more than 22 m 3 /day of green syngas with an adjustable H 2 /CO ratio (0.4-3) and a photochemical energy conversion efficiency of >17%. This research charts a promising course for designing practical, natural sunlight–driven artificial photosynthesis systems.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3