High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter

Author:

Sund Patrik I.1ORCID,Lomonte Emma234ORCID,Paesani Stefano1ORCID,Wang Ying1ORCID,Carolan Jacques15,Bart Nikolai6,Wieck Andreas D.6ORCID,Ludwig Arne6ORCID,Midolo Leonardo1ORCID,Pernice Wolfram H. P.2347ORCID,Lodahl Peter1ORCID,Lenzini Francesco234ORCID

Affiliation:

1. Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen DK-2100, Denmark.

2. Institute of Physics, University of Muenster, Muenster 48149, Germany.

3. CeNTech—Center for Nanotechnology, Muenster 48149, Germany.

4. SoN—Center for Soft Nanoscience, Muenster 48149, Germany.

5. Wolfson Institute for Biomedical Research, University College London, London, UK.

6. Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum D-44780, Germany.

7. Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany.

Abstract

Scalable photonic quantum computing architectures pose stringent requirements on photonic processing devices. The needs for low-loss high-speed reconfigurable circuits and near-deterministic resource state generators are some of the most challenging requirements. Here, we develop an integrated photonic platform based on thin-film lithium niobate and interface it with deterministic solid-state single-photon sources based on quantum dots in nanophotonic waveguides. The generated photons are processed with low-loss circuits programmable at speeds of several gigahertz. We realize a variety of key photonic quantum information processing functionalities with the high-speed circuits, including on-chip quantum interference, photon demultiplexing, and reprogrammability of a four-mode universal photonic circuit. These results show a promising path forward for scalable photonic quantum technologies by merging integrated photonics with solid-state deterministic photon sources in a heterogeneous approach to scaling up.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3